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® Nonlinear gyrokinetic simulations can predict turbulent-driven energy,
momentum, and species transport and fluctuations

® Comparisons of simulations with transport and fluctuation measurements
help verify the simulations

® This talk compares simulations of a JET L-mode using the GYRO code
with transport analysis and reflectometry measurements

® Encouraging agreement is achieved
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Reflectometry measurements

® Tunable microwave reflectometers operating in X-mode (FE _L BTF)

1. JET: 92-96 and 100-106 GHz

e Density fluctuation 71¢(7) RMS levels

e Radial correlations of 72¢(7)72e(7”) and correlation length Ay,
® Power spectra Fourier Transform of 7ie(t) Te(t)

® Refs:

1. Mazzucato and Nazikian, Phys. Rev. Lett 91 045001 (2003)

2. Mazzucato, Nazikian, Scott, 22 EPS (Bournemouth, 1995)

3. Valeo, Kramer, Nazikian, Plasma Phys. Control. Fusion 44 L1 (2002)
4. Fonseca et al., Poster NP8.00103
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Analysis and simulation tools

® TRANSP

1. analyze plasmas for transport analysis and plasma profiles

® TRGK = TRANSP-postprocessor = GYRO-preprocessor
1. generates inputs for GYRO

® GYRO

1. time evolution of potential and distribution functions of kinetic species

2. 3 spatial and 2 phase space dimensions

e SCHRADO?2

1. Full-wave 2D scattering from density cut-off region
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GYRO simulations

e Nonlinear runs to saturation of ITG/TEM turbulence (kgps < 1.0)

® Kinetic electrons and 2 kinetic ion species (bulk and combined impurities)
® Extended radial domain

® Most runs in the electrostatic approximation

® Achieved mixed success simulating radial flows of energy, species,
and toroidal angular momentum in DIII-D, JET, and TFTR plasmas

® Here we focus of simulations of transport and density fluctuations 7¢

e JET 68733 with By p=3.4T, I,=2MA, P g=5.9MW, PR g < 2MW
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Approximate agreement for ion energy and angular momentum flows

® TRANSP analysis for ion energy and angular momentum flows

e Varied F;- flow shearing and up/down 20 percent to study sensitivity
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Approximate agreement for electron energy and species flows

TRANSP analysis for electron energy and species flows

® Again varied results from inferred F/,- flow and scaled up/down 20 percent
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Why are simulated flows low in interior, high outside?

® Compare mode spectra at different radii

Bulk ion energy diffusion Impurity ion energy diffusion Electron energy diffusion
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® Simulations very close to marginal near core

® Implies strong sensitivity to drive and suppression terms
(plasma gradients and FE/,- flow shear)
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Simulated n fluctuations consistent with reflectometry

® Integrate electron distribution to get 72 in 3D and time
@ Use postprocessor to get nie (1, 0, = 0, 1)
e® Compute Root-Mean-Square along outer mid-plane (6@ = 0)

Examples of Fle / < ne > snapshots
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® Both simulation and measurement are less than about 0.2%
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Radial correlation consistent with reflectometry

e Correlation of e (71, t) and ne (72, t)

e )\, defined by Ar where correlation decreases below 1/e

® Magnetic axes at 2.97m and outboard separatrix at 3.85m
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Animation

® Plan to place two 2D animations of ne at R=3.22 and 3.55m here

GYRO Simulation of fe in Jet 68733

R=3.22m R=3.53m
r/a=0.26 r/a=0.60
n,=2.58 x10'%/ m3 n,=1.80 x10°/ ms3
RMS(z, /n,) = 0.002 RMS(z,/n,) = 0.009
A =1.0cm A:r=0.9 cm
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How to improve the measurements

® Calculate full wave reflections

1. Simulate fluctuations near cut off
2. Later: Input GYRO simulations of 7 (7°)

® Simulate measurements assuming 2D scattering from Gaussian fluctuations

R=3.25 [m]
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Summary

® Completed nonlinear gyrokinetic simulations of density fluctuations over
extended radial domains

® Found approximate agreement between simulations and measurements
of transport and 71 in JET L-mode

® Also found similar agreement with companion shot at higher B g (3.8T)
approximately consistent with p4 scaling

® Recent simulations using 2D full-wave scattering
consistent with measurements
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Backup info

® For questions
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Example of JET shot

® L-mode heated by NBI and fundamental D-ICRH
e Brp = 3.4T, Ip = 2.0MA, kK =1.6,0 = 0.2,
o Py, =5.9MW, Prcreg <2MW, few = 0.3, B, = 0.45

JET 68733 l_ GYRO simulation time
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Example of GYRO inputs

® Measured profiles mapped by TRANSP

GYRO input profiles
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® Simulate extended radial domain to allow turbulence room to saturate

® Domain width > > pg (ion sound speed gyro-radius)
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Similar levels of agreement in another JET L-mode

® Similar to previous shot, but By p: 3.4 — 38T

Radial correlation function (Pearson method)
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® Note smaller Ay at higher B
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How to improve the measurements

® Calculate full wave reflections
1. Simulate fluctuations near cut off

2. Input GYRO simulations of 72¢(7)

® Simulate measurements
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